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Abstract The cytokine and cell attachment protein osteopontin (OPN) is not necessary for the development and
survival of mice in a clean animal facility. The primary role of OPN appears to be that of facilitating recovery of the
organism after injury or infection, which generally causes an increase in its expression. It also is essential for some forms
of bone remodeling. OPN stimulates cellular signaling pathways via various receptors found on most cell types and can
encourage cell migration. OPN modulates immune and inflammatory responses and possibly negatively regulates Ras
signaling pathways. Its apparent ability to enhance cell survival by inhibiting apoptosis may explain why the metastatic
proficiency of tumor cells increases with increased OPN expression. J. Cell. Biochem. Suppls. 30/31:92–102,
1998. r 1998 Wiley-Liss, Inc.
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Osteopontin (OPN) is a highly phosphory-
lated and glycosylated protein found in all body
fluids and in the extracellular matrix of miner-
alized tissues. Background information and
more thorough documentation of the assertions
made in the report can be found in the reviews
by Patarca et al. [1993], Giachelli et al. [1995],
Butler et al. [1996], Oates et al. [1997], and
Rittling and Denhardt [1999], which provide a
more extensive discussion of what is known
about OPN, particularly in the immune sys-

tem, in the vascular system, in mineralized
tissues, in cancer, and in the kidney, respec-
tively. These investigators also cover material
not covered here, for example, the structure of
the protein and its influence on the precipita-
tion of Ca21 salts. OPN is widely expressed,
particularly at sites of inflammation. Through
its interactions with various cell surface recep-
tors, it stimulates intracellular signaling path-
ways that modify cell behavior and alter gene
expression. A principal function may be to sup-
port homeostatic processes that reduce cell
death that results from potentially lethal in-
sults.

REGULATION OF OPN EXPRESSION

OPN expression is enhanced by many agents
acting on specific cell types through diverse
signaling pathways, some of which involve pro-
tein kinase C (PKC). For example, PKC ap-
pears to be a downstream effector of OPN ex-
pression in Src2/2 fibroblasts stimulated with
epidermal growth factor (EGF) [Chackala-
parampil et al., 1996]. Treatments known to
affect OPN mRNA levels, which usually corre-
late with OPN secretion, are listed in Table I. In
most, but not all, of the studies reported, con-
trol is exerted at the level of transcription, at
least in large part. Although increases in OPN
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expression are often the focus, Broess et al.
[1995] have investigated the ability of 1,25(OH)2

vitamin D3 to inhibit OPN expression in vari-
ous populations of 17-day chicken embryo osteo-
blasts. These investigators make the important
points that the developmental stage and spe-
cies of the embryo and the treatment of the
osteoblasts and their state of maturation deter-
mine how the cells will respond in any particu-
lar case.

Analysis of the mouse, human, chicken, and
rat promoters has uncovered many potential
sites for transcription factor interactions, and
some transcription factors have been impli-
cated in OPN transcription. These include
nuclear receptors, including progesterone, glu-
cocorticoids, and 1a,25(OH)2 vitamin D3; basic
helix-loop-helix proteins; AP-1(fos/jun); and
CBFA1/PEBP2aA. Increased OPN expression
at sites of injury or infection likely results from
the release of growth factors (e.g., platelet de-
rived growth factor, PDGF) or cytokines (e.g.,
interleukin-1 [IL-1]) that activate various tran-
scription factors, including Fos and Jun, that
are capable of upregulating OPN transcription.
Bonnelye et al. [1997] discovered that steroido-
genic factor-responsive elements (SFREs) in the
OPN promoter are targets for the estrogen-
related orphan receptor ERR-1 in osteoblast
cells. ERR-1 is clearly involved in controlling
ossification. The POU transcription factor Oct-4,
which is highly expressed in the mouse preim-
plantation embryo, binds to a sequence ele-
ment, PORE, in the first intron in OPN and
transactivates OPN transcription, which can
be inhibited by the HMG protein Sox-2 in preim-
plantation embryo cell lines [Botquin et al.,
1998].

Mice deficient in the runt-family transcrip-
tion factor CBFA1/PEBP2aA fail to form bones,
and unable to respire because of the absence of
a mineralized rib cage, they die immediately
after birth [Komori et al., 1997]. Osteoblasts
and hypertrophic chondrocytes from the em-
bryos of mutant mice expressed OPN (also osteo-
calcin, alkaline phosphatase) at much lower
levels than cells from control embryos, suggest-
ing that CBFA1/PEBP2aA is required for OPN
expression in these cells. Overexpression of
CBFA1/PEBP2aA augments OPN expression
in the osteoblast-like cells MC3T3E1 [Tsuji et
al., 1998]. Scleraxis, a basic helix-loop-helix
transcription factor expressed in the sclero-

tome, enhances OPN expression when overex-
pressed in osteoblasts [Liu et al., 1997]. Since
scleraxis is upregulated by transforming growth
factor-b (TGF-b) it is likely to be one of effectors
of TGF-b signaling [Liu et al., 1996].

OPN RECEPTORS: MEDIATORS OF
ADHESION, MIGRATION, AND SIGNALING

OPN is a ligand for the integrins avb1, avb3,
and avb5 [Liaw et al., 1995], and for a4b1 [Bay-
less et al., 1998], a8b1 [Denda et al., 1998], and
a9b1 [Smith et al., 1996]. CD44, the hyaluronic
acid receptor, is also a receptor for OPN [Weber
et al., 1996]. Interactions of immobilized OPN
with avb1, avb3 or avb5 support the adhesion of
smooth muscle cells, but only avb3 will promote
a migratory response [Liaw et al., 1995]. Each
of these three integrins also exhibits different
distributions on the cell surface and sends dif-
ferent signals to the cell. Although the GRGDS
sequence in OPN is a major integrin binding
site, required for many cell types to adhere to
OPN [Xuan et al., 1995], other sequences in
OPN also interact with receptors. For example,
Katagiri et al. [1996] have shown that B16-BL6
cells can bind to sequences on both the N-ter-
minal and the C-terminal sides of the GRGDS
sequence. The a4b1 integrin, which is expressed
on activated leukocytes, mediates adhesion via
a sequence present in the thrombin-generated
N-terminal fragment, which contains the
GRGDS sequence. However, adhesion can be
inhibited by a peptide containing an LDV se-
quence, but not an RGD sequence [Bayless et
al., 1998]. Figure 1 illustrates the various inte-
grins implicated in OPN binding.

The centrally located thrombin cleavage site,
6 or so residues on the C-terminal side of the
GRGDS sequence in OPN, is strictly conserved.
In a study of the ability of OPN to promote
haptotaxis (migration promoted by bound li-
gand) and chemotaxis (migration in response to
soluble ligand) of two different cancer cell lines,
Senger et al. [1996] found that OPN promoted
haptotaxis, but not chemotaxis, and that only
the N-terminal GRDGS-containing portion of
OPN was active. Cleavage of OPN by thrombin
enhanced the ability of the GRGDS sequence to
bind avb3 and to promote haptotaxis. The a9b1

binding site, which also involves the GRGDS
sequence, is masked in intact OPN, but re-
vealed upon cleavage by thrombin [Smith and
Giachelli, 1998]. These results suggest a role
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for OPN in the clotting process because throm-
bin formed from prothrombin at the site of
vascular injury initiates clot formation by cleav-
ing fibrinogen. Cleavage of OPN during clot
formation would expose the a9b1 binding site,
which could serve to attract and promote the
adherence of cells expressing a9b1 (also avb3).
Possibly this underlies the observation by Liaw
et al. [1998] that skin wounds healed aber-
rantly in mice lacking OPN. The removal of
tissue debris was retarded, apparently the re-
sult of impaired macrophage function rather
than reduced macrophage infiltration.Although
the newly formed skin matrix appeared less
well organized, and the collagen fibrils were
smaller, the tensile properties of the healed
wound appeared normal.

Binding of OPN to any of the above receptors
impacts on cellular signaling pathways.
Changes in intracellular Ca21 levels, in protein
tyrosine phosphorylation, in oxidant levels, and
in phosphoinositide metabolism have been re-
ported [e.g., Denhardt et al., 1995; Chellaiah
and Hruska, 1996]. When integrin receptors
cluster in an adhesion plaque, interactions
among associated proteins, including paxillin,
vinculin, focal adhesion kinase, src, cas, actin,
and a-actinin result in changes in protein phos-
phorylation and cytoskeletal structure. Elgav-
ish et al. [1998] discovered a subpopulation of
primary prostate epithelial cells that, under
growth-restricting conditions, could proliferate
on a substrate coated with OPN, but not on
substrates coated with collagen or fibronectin.
This suggests that certain cells can be stimu-
lated to proliferate by OPN in the extracellular
matrix, possibly explaining the tendency of pros-
tate tumors to metastasize to bone. Rat aortic
endothelial cells undergo apoptosis when plated
on plastic in the prolonged absence of serum.
However, if the cells are plated on plastic coated
with OPN the cells survive, apparently as the
result of a Ras- and Src-dependent activation of

NFkB mediated by the avb3 integrin [Scatena
et al., 1998]. OPN, previously reported to in-
hibit the induction of inducible nitric oxide syn-
thase by inflammatory mediators in cell culture
[Hwang et al., 1994], has also been shown to
inhibit induction of iNOS by LPS in tissue from
rat thoracic aortae [Scott et al., 1998].

Soluble OPN partially inhibits the apoptotic
response of human umbilical vein endothelial
cells deprived of necessary growth factor stimu-
lation (C.A. Lopez, J. Zhang, and D.T. Den-
hardt, in preparation). The results presented in
Figure 2 show that OPN affects the apparent
distribution of Bcl-XS/L in the cell. In contrast to
the control cells in Figure 2A, the growth factor-
deprived cells shown in Figure 2B are undergo-
ing apoptosis (data not shown) and exhibit a
change in the localization of Bcl-XS/L from a
predominantly perinuclear location to a more
diffuse cytoplasmic distribution. Independent
preparations of OPN from two different sources
inhibited apoptosis and the dispersal of Bcl-XS/L

(Fig. 2C,D). Bcl-XL is a member of the anti-
apoptotic Bcl-2 family that appear to function
by inhibiting activation of procaspases and
maintaining the integrity of organelle mem-
branes. By contrast, Bcl-Xs is pro-apoptotic.
Although the details of the signaling pathway
remain unclear, OPN evidently facilitates the
survival of stressed cells by suppressing apopto-
sis.

OPN IN MINERALIZED TISSUES: ROLE IN
BONE REMODELING

OPN, one of the more abundant noncollag-
enous proteins in bone, is localized to cell–
matrix and matrix–matrix interfaces in miner-
alized tissues, notably the lamina limitans and
cement lines, where it is deposited as the result
of osteoclast action [Dodds et al., 1995]. OPN
may protect the exposed bone surface or prime
it for subsequent cell–matrix interactions.
McKee and Nanci [1996] have proposed that
OPN acts as an opsonin, facilitating macro-
phage adhesion and phagocytosis of particulate
mineralized tissue debris. OPN can be cross-
linked by transglutaminase; it can bind to vari-
ous extracellular molecules, including type I
collagen, fibronectin, and osteocalcin. This
might be expected to add physical strength to
extracellular matrices. OPN promotes the at-
tachment of bone cells to bone matrix, although
there is disagreement regarding its colocaliza-
tion with the avb3 integrin in the osteoclast
sealing zone [Butler et al., 1996].

Fig. 1. Integrins that bind OPN. Faccio et al. [1998] reported
that the avb3 integrin on the osteoclast-like cell line GCT23
could exist in an inactive or an active state and that the activated
integrin was more effective at binding OPN and promoting
migration.
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OPN is not required for the development of
bones and teeth because these mineralized tis-
sues are essentially normal in mice lacking
OPN, even though there is an apparent oversup-
ply of osteoclast precursors in the spleen and

marrow compared with control mice [Rittling et
al., 1998]. It has been shown that ovariecto-
mized OPN-deficient mice do not exhibit the
decrease in bone density that occurs in wild-
type mice (H. Yoshitake, S.R. Rittling, D.T. Den-

Fig. 2. OPN inhibits the redistribution of Bcl-XS/L induced in
human umbilical vein endothelial cells by growth factor depri-
vation. Cells (2 3 104) were plated on gelatin-coated glass
coverslips in M199 medium supplemented with 10% fetal calf
serum (FCS) (HyClone, Logan, UT), 4 ng/ml acidic fibroblast
growth factor (Sigma Chemical Co., St. Louis, MO), 7.5 µg/ml
endothelial cell growth factor supplement (Sigma) and 5 U/ml
heparin. Two days later, the medium was removed and replaced
with M199 plus 1% bovine serum albumin (BSA) and other
factors as indicated below; 12 h later, the cells were fixed in
methanol at 0°C for 6 min at 220°C, washed 33 with phosphate-
buffered saline (PBS), and incubated with 0.3% Triton X100 1

5% BSA for 1 h at 25°C. The coverslips were then incubated for

1 h with 1 µg/ml anti-Bcl-XS/L (Santa Cruz Biotechnology, Santa
Cruz, CA), washed 33 with PBS, and then incubated further
with FITC-conjugated Affinipure goat anti-rabbit IgG(H 1 L)
(Jackson ImmunoResearch Laboratories, West Grove, PA). Fluo-
rescence in the cells was visualized using a Nikon Diaphot 300
microscope. A: Cells in M199/BSA with fibroblast growth fac-
tor-a (FGF-a) ECGS (endothelial cell growth supplement), and
FCS. B: Cells in M199/BSA alone. C: Cells in M199/BSA without
supplements but with 5 pM human OPN. The human OPN was
purified from conditioned medium as described by Hwang et al.
[1994]. D: Cells in M199/BSA without supplements but with 5
pM bovine OPN purified from milk, a gift from Dr. E. Sörensen
(Aarhus, Denmark). Color plate on page 318.
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hardt, and M. Noda, submitted). It appears
that bone lacking OPN is less readily remod-
eled. Chackalaparampil et al. [1996] observed
that Src2/2 mice, which develop osteopetrosis
due to impaired osteoclast action, expressed
significantly less OPN than controls. In con-
trast, OPN was expressed at higher levels in
rats bearing any one of three different muta-
tions (ia, op, tl) that cause osteopetrosis, which
results from a defect in bone resorption [Shal-
houb et al., 1994]. The observed increased accu-
mulation of OPN in the bones of these animals,
which is possibly the consequence of higher
levels of circulating 1a,25(OH)2vitaminD3, may
represent an effort to compensate for the defect
in bone resorption.

OPN can be phosphorylated intracellularly
by the Golgi apparatus casein kinase [Lasa et
al., 1997] and extracellularly by cell surface
ectoenzymes with a specificity resembling that
of casein kinase II (CKII) [Zhu et al., 1997]. In
reviewing the different types of serine-phos-
phorylated and tyrosine-sulfated forms of OPN
produced by pre-osteoblasts and osteoblasts,
Sodek et al. [1995] report that bisphosphonates
markedly suppress the expression of OPN by
rat calvarial cells, possibly accounting for the
ability of bisphosphonates to inhibit bone re-
sorption. Some experiments suggest that OPN
species with different post-translational modifi-
cations may have different functions in bone
modeling or remodeling. The strong conserva-
tion of the phosphorylated serine residues and
their sequence contexts suggests that they pre-
sent a configuration of charges that is neces-
sary for a crucial action, possibly that of bind-
ing bone mineral matrix in a very specific
conformation that facilitates unique interac-
tions of OPN with bone cells. Since dephosphory-
lated OPN does not support osteoclast attach-
ment, it is possible that the tartrate-resistant
acid phosphatase (TRAP), which is also se-
creted by osteoclasts, regulates osteoclast motil-
ity and detachment by its action on OPN [Dodds
et al., 1995]. Phosphorylation of recombinant
OPN by CKII affects its ability to support cell
adhesion in a cell- or receptor-specific manner
[Katayama et al., 1998]. Phosphorylation in-
creased the capacity of OPN to stimulate osteo-
clast attachment about twofold. Whereas osteo-
clast attachment depended on a b3 integrin and
the GRGDS sequence, osteoblast attachment
was independent of the b3 integrin, though it
still required the GRGDS sequence. Unlike os-

teoclast attachment, osteoblast attachment was
not enhanced by CKII phosphorylation of OPN.

Mechanical stresses on cells influence OPN
expression. Intermittent hydrostatic compres-
sion of various osteoblast cell types in culture
augmented OPN (and alkaline phosphatase)
expression [Kubota et al., 1993; Klein-Nulend
et al., 1997]. Harter et al. [1995] found that
osteoblast-like cells exposed to chronic intermit-
tent mechanical strain contained elevated lev-
els of OPN and type I collagen mRNA. In the
intact mouse OPN mRNA expression was in-
creased, and myeloperoxidase expression de-
creased, after mechanical loading (repeated
rapid bending for 3 min) of the rat tibia [Miles
et al., 1998]. These mechanical forces are
thought to act at the sites of cell attachment,
perhaps involving OPN, and to generate a shear
stress at adhesion plaques. Mechanical stresses
transmitted by the integrins to the cytoskel-
eton modify cell shape and gene expression.
Increased [Ca21]i resulting from the stimula-
tion of mechanosensitive channels likely also
modifies gene expression. These studies are
consistent with a function for OPN in bone
remodeling, but they do not indicate whether
the function is primarily that of a static attach-
ment factor or a dynamic signaling molecule.

OPN IN EXTRACELLULAR FLUIDS: ROLES IN
IMMUNITY, INFECTION, INFLAMMATION,

AND CANCER

Activation of T lymphocytes results in a sub-
stantial increase in OPN transcription, hence
the alternative name early T-lymphocyte activa-
tion gene 1, or Eta-1 [Patarca et al., 1993].
Eta-1/OPN is able to enhance resistance to in-
fection by flaviviruses (cause of yellow fever
and viral encephalitis) and Rickettsia tsutsuga-
mushi (now called Orientia tsutsugamushi). We-
ber and Cantor [1996] have presented argu-
ments that Eta-1/OPN is T-lymphocyte
suppressor factor, which acts to inhibit the
helper activity of CD51 T cells and thereby
suppress primary antibody responses. They also
summarize evidence that Eta-1/OPN stimu-
lates immunoglobulin production by B lympho-
cytes, possibly causing some forms of autoim-
mune disease when overproduced. Rotavirus
infection of the intestinal epithelia stimulates
OPN expression, a response that seems to
hinder the course of the disease since infected
OPN-deficient mice exhibit a more severe diar-
rhea than is seen in the control mice (E.E.
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Rollo, S.J. Hempson, S.R. Rittling, D.T. Den-
hardt, E.R. Mackow, and R.D. Shaw, in prepara-
tion).

OPN expression is enhanced as a conse-
quence of tissue injury. It is found at high levels
in granulomas associated with Mycobacterium
tuberculosis, silicosis, reactions to foreign mate-
rial, or certain immunologic disorders [Nau et
al., 1997; Carlson et al., 1997]. OPN produced
at sites of injury or infection is a potent chemoat-
tractant for macrophages, which themselves
often express high levels of OPN. Giachelli et
al. [1998] showed that macrophage accumu-
lation induced by intradermal injection of
N-formyl-met-leu-phe (FMLP) was substan-
tially inhibited by anti-osteopontin antibody.
OPN expression is upregulated during the
maturation of monocytes into macrophages
[Krause et al., 1996], a process that presumably
occurs as circulating monocytes extravasate and
migrate through the tissue (up a cytokine/
chemokine/OPN? gradient) to the site of injury.

Feuerstein and colleagues studied OPN ex-
pression in infarcts caused by occlusion of the
middle cerebral artery of spontaneously hyper-
tensive rats [Ellison et al., 1998]. The resulting
focal ischemia was associated with a subset of
ED-1 positive (possibly microglia-derived) mac-
rophages that accumulated in the ischemic zone,
and by 5 days after occlusion a maximal in-
crease in OPN mRNA of about fiftyfold was
reached. They suggested that OPN be consid-
ered a stress-inducible protein necessary dur-
ing the healing process to form the peri-infarct
scar and a new glial-limiting membrane. OPN
expression is strongly elevated in the kidney by
ischemic injury [Padanilam et al., 1996] or hy-
dronephrosis [Diamond et al., 1995]. Ischemic
injury induced in the kidney of the OPN-
deficient mouse by clamping the renal artery
appears to be more severe in comparison with
the wildtype animal, possibly because there is
also an increase in iNOS activity (E. Noiri, K.
Dickman, F. Miller, G. Romanov, V.I. Romanov,
R. Shaw, S.R. Rittling, D.T. Denhardt, and M.S.
Goligorsky, submitted).

OPN may cause the restenosis observed after
angioplasty. Restenosis results from local in-
flammation, thrombosis, and invasion and pro-
liferation of smooth muscle cells within the
intima of coronary arteries. OPN generated at
the site of the angioplasty-induced injury to the
endothelium interacts with avb3 integrins on
coronary artery smooth muscle cells, causing

the cells to migrate along the putative OPN
gradient to the site of injury and to proliferate
there in a PDGF-dependent manner. Evidence
for this includes the ability of antisense oligo-
nucleotides and antibodies targeting either OPN
or avb3 to inhibit the migratory, invasive and
proliferative abilities of coronary artery smooth
muscle cells [Panda et al., 1997]. Weintraub et
al. [1996] found that the ability of vascular
smooth muscle cells to adhere and to invade
collagen gels correlated with the amount of
OPN they produced. This implies an autocrine/
paracrine signaling pathway. Other examples
of OPN expression associated with inflamma-
tion include renal tubulointerstitial disease, ath-
erosclerosis, and myocardial necrosis [Giachelli
et al., 1995]. Clearly, OPN can stimulate macro-
phage accumulation. Although this is likely im-
portant in combatting infections, in other cir-
cumstances the release of inflammatory
mediators by the activated macrophages may
actually increase the amount of tissue damage.

OPN, known earlier as transformation associ-
ated phosphoprotein, enhances the metastatic
potential of transformed cells [Feng et al., 1995;
Oates et al., 1996]. It is often expressed at high
levels by malignant cells, correlating with the
levels of Ras activation. A sequence element in
the OPN promoter that contributes to increased
OPN expression in Ras-transformed mouse 3T3
fibroblasts was described by Guo et al. [1995].
OPN is abundant in many human carcinomas,
particularly at the invasive edge of the tumor.
In different tumor types it may be produced by
the tumor cells themselves and/or by macro-
phages associated with the tumor [Brown et al.,
1994; Tuck et al., 1998]. Expression of OPN and
CD44v9 by tumor cells strongly correlates with
the extent of lymphatic vessel invasion and
distant metastases in gastric cancer [Ue et al.,
1998]. Weber et al. [1997] have suggested that
the interaction of a modified OPN species with
CD44, dysregulation of which has long been
associated with the malignant phenotype, fos-
ters the metastatic process by stimulating mi-
gration of the cancer cell. Chambers and her
colleagues used a newly developed quantitative
enzyme-linked immunosorbent assay (ELISA)
for OPN to establish that elevated OPN levels
in the plasma of patients with metastatic dis-
ease are associated with reduced patient sur-
vival [Singhal et al., 1997].

Shanmugam et al. [1997] showed that Rat-1
cells transformed with a temperature-sensitive
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RSV mutant secreted at 41°C a highly si-
alylated 69-kDa form of OPN that was able to
bind to the cells. At 34°C, the 69-kDa form was
converted by a cell surface sialidase to a 62-kDa
form that could not bind to cells. It was sug-
gested that the inability of the 62-kDa species
to bind to the cell might augment the trans-
formed phenotype. In addition to inhibiting
apoptosis (Fig. 2), OPN may promote the sur-
vival of transformed cells by reducing NO pro-
duction by cytotoxic macrophages [Rollo et al.,
1997] or by facilitating tumor cell adherence
and invasion [Weintraub et al., 1996]. OPN,
whose expression is increased by Ras activa-
tion, may negatively regulate Ras signaling
pathways. This hypothesis is supported by the
observation that 3T3 cells able to synthesize
OPN appear able to support higher levels of
oncogenic Ras expression than cells unable to
synthesize OPN (Wu, D.T. Denhardt, and S.R.
Rittling, submitted). We suggest that a high
level of Ras signaling, as from a Ras oncogene,
causes the death of the cell (by apoptosis?) in
the absence of OPN.
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